
International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Humming Bird (01st March 2014)

 Cape Institute of Technology 70 | P a g e

To Improve Reliability of Message Passing In MPI Libraries

Using Flow Checker

#1
N.Kanagavalli, S.Krishanth

#2

#1
 Assistant Professor, Department of Information Technology, Saveetha Engineering College

 Chennai, India
1
kanagavalli@saveetha.ac.in

#2
PG Scholars, ME Software Engineering, Saveetha Engineering College

 Chennai, India
#2

skrishanth@gmail.com

Abstract—
This paper presents Standard testing methods of MPI programs do not guarantee coverage of all non-

deterministic interactions (e.g., wildcard-receives). Programs tested by these methods can have untested paths

(bugs) that may become manifest unexpectedly. Previous formal dynamic verifier’s cover the space of non-

determinism but do not scale, even for small applications. We present DAMPI, the first dynamic analyzer for

MPI programs that guarantees scalable coverage of the space of non-determinism through a decentralized

algorithm based on Lamport-clocks. DAMPI computes alternative non-deterministic matches and enforces them

in subsequent program replays. To avoid interleaving explosion, DAMPI employs heuristics to focus coverage

to regions of interest. We show that DAMPI can detect deadlocks and resource-leaks in real applications. Our

results on a wide range of applications using over a thousand processes, which is an order of magnitude larger

than any previously reported results for MPI dynamic verification tools, demonstrate that DAMPI provides

scalable, user-configurable testing coverage. The MPI issues a Flow checker to both the sender and the receiver

after the verification of the secret key. The generation of the Flow checker involves the selection of 8-bit

random key using the appropriate function available in .Net. By using RSA algorithm session key is generated.

The session key is converted into binary from which the last two binary digits are chosen through which the

Flow checker is created. Once the Flow checker matches on the sender and the receiver side, the data can be

encrypted and the intermediate encrypted form is viewable. Similarly after decryption the encrypt decrypt file is

also available. Thus a secure transmission of data takes place between the sender and the receiver using MPI

Libraries

Keywords: Flow checker, MPI algorithm, RSA algorithm, encryption, decryption.

I. INTRODUCTION
In Flow checker cryptography, Flow

checker (FC) employ MPI mechanisms to distribute

session keys and public discussions to check for

eavesdroppers and verify the correctness of a session

key. However, public discussions require additional

communication rounds between a sender and

receiver and cost precious quebits. By contrast,

classical cryptography provides convenient

techniques that enable efficient key verification and

user authentication. Key Distribution Protocols are

used to facilitate sharing secret session keys between

users on communication networks. By using these

shared session keys, secure communication is

possible on insecure public networks. However,

various security problems exist in poorly designed

key distribution protocols; for example, a malicious

attacker may derive the session key from the key

distribution process. A legitimate participant cannot

ensure that the received session key is correct or

fresh and a legitimate participant cannot confirm the

identity of the other participant. Designing secure

key distribution protocols in communication security

is a top priority.

II. BACKGROUND
A. Flow Checker

Flow checker (FC) which works on network security

by the use of key agreement. Secrete Key which is

used by each user in the network. Each user has

unique Secrete and which will be shared by each

user to MPI. In MPI we have generate a Key for

network Security with the Help of Algorithms and

Flow checker Mechanics. Through that we have to

prove how secure the data has been transmitted over

network to receiver.

B. Flow Checker Process

Flow checker (FC) is a method of securely

distributing cryptographic key material for

subsequent cryptographic use. In particular, it is the

RESEARCH ARTICLE OPEN

ACCESS

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Humming Bird (01st March 2014)

 Cape Institute of Technology 71 | P a g e

sharing of random classical bit strings using Flow

checker states. Its use of a set of non-orthogonal

Flow checker states then requires this key material to

be considered Flow checker information. The Flow

checker encoding of cryptographic keys for

distribution is valuable because the no-cloning

theorem and the superposition principle governing

Flow checker states confer a uniquely powerful form

of information security during transmission of key

bits. For maximal security, it can be followed by

one-time pad message encryption, which is the only

cryptographic method that has been proven to be

unbreakable once a random key has been securely

shared. Flow checker—the creation of secret keys

from Flow checker mechanical correlations—is an

example of how physical methods can be used to

solve problems in classical information theory. Flow

checker Cryptography, or Flow Checker Distribution

(FCD), uses Flow checker mechanics to guarantee

secure communication. It enables two parties to

produce a shared random bit string known only to

them, which can be used as a key to encrypt and

decrypt messages. An important and unique property

of Flow checker cryptography is the ability of the

two communicating users to detect the presence of

any third party trying to gain knowledge of the key.

This result from a fundamental part of Flow checker

mechanics: the process of measuring a Flow checker

system in general disturbs the system. A third party

trying to eavesdrop on the key must in some way

measure it, thus introducing detectable anomalies.

By using Flow checker superposition or Flow

checker entanglement and transmitting information

in Flow checker states, a communication system can

be implemented which detects eavesdropping. If the

level of eavesdropping is below a certain threshold a

key can be produced which is guaranteed as secure

(i.e. the eavesdropper has no information about),

otherwise no secure key is possible and

communication is aborted.

C. Flow checker cryptography

The security of Flow checker (FC) cryptography

relies on the foundations of MPI mechanics, in

contrast to traditional public key cryptography which

relies on the computational difficulty of certain

mathematical functions, and cannot provide any

indication of eavesdropping or guarantee of key

security. Flow checker cryptography is only used to

produce and distribute a key, not to transmit any

message data. This key can then be used with any

chosen encryption algorithm to encrypt (and decrypt)

a message, which can then be transmitted over a

standard communication channel. The algorithm

most commonly associated with Flow checker is the

one-time pad, as it is provably unbreakable when

used with a secret, random key.

III. RELATED WORK
G.Carozza et al. [11] addresses the problem

of software fault diagnosis in complex safety critical

software systems. The transient manifestations of

software faults represent a challenging issue since

they hamper a complete knowledge of the system

fault model at design/development time. By taking

into account existing diagnosis techniques, the paper

proposes a novel diagnosis approach, which

combines the detection and location processes. More

specifically, detection and location modules have

been designed to deal with partial knowledge about

the system fault model. To this aim, they are tuned

during system execution in order to improve

diagnosis during system lifetime. A diagnosis engine

has been realized to diagnose software faults in a

real world middleware platform for safety critical

applications. Preliminary experimental campaigns

have been conducted to evaluate the proposed

approach.

R.M.Kirby et al[12] considers the problem of

formal verification of MPI programs operating under

a fixed test harness for safety properties without

building verification models. In this approach, they

directly model-check the MPI/C source code,

executing its interleaving with the help of a

verification scheduler. Unfortunately, the total

feasible number of interleaving is exponential, and

impractical to examine even for our modest goals.

Our earlier publications formalized and implemented

a partial order reduction approach that avoided

exploring equivalent interleaving, and presented a

verification tool called ISP. This paper presents

algorithmic and engineering innovations to ISP,

including the use of OpenMP parallelization that

enables to handle practical MPI programs, including:

(i) ParMETIS - a widely used hypergraph partitioner,

and (ii) MADRE - a Memory Aware Data Re-

distribution Engine, both developed outside our

group. Over these benchmarks, ISP has

automatically verified up to 14K lines of MPI/C

code, producing error traces of deadlocks and

assertion violations within seconds.

Z. Chen et al [13] suggest that Many MPI

libraries have suffered from software bugs, which

severely impact the productivity of a large number

of users. This paper presents a new method called

Flow Checker for detecting communication-related

bugs in MPI libraries. The main idea is to extract

program intentions of message passing

(MPintentions), and to check whether these MP-

intentions are fulfilled correctly by the underlying

MPI libraries, i.e., whether messages are delivered

correctly from specified sources to specified

destinations. If not, Flow Checker reports the bugs

and provides diagnostic information. We have built a

Flow Checker prototype on Linux and evaluated it

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Humming Bird (01st March 2014)

 Cape Institute of Technology 72 | P a g e

with five real-world bug cases in three widely-used

MPI libraries, including Open MPI, MPICH2, and

MVAPICH2. Our experimental results show that

Flow Checker effectively detects all five evaluated

bug cases and provides useful diagnostic information.

Additionally, our experiments with HPL and NPB

show that Flow Checker incurs low runtime

overhead (0.9-9.7% on three MPI libraries).

IV. EXISTING WORK
 Existing MPI tools either lack coverage

guarantees or do not scale well. In this paper we

present DAMPI, a scalable framework that offers

coverage guarantees for programs that use non-

deterministic MPI calls. Our contributions include a

novel method for detecting different outcomes of a

nondeterministic receive without relying on a

centralized process/thread. These different outcomes

can be enforced through replays. We also present

two different search bounding heuristics that provide

the user with the ability to limit the coverage to areas

of interests. We report our results on applying our

tools on medium to large benchmarks running with

thousands of processes, many of which make

extensive use of nondeterministic calls. DAMPI is

the first (and currently only) tool that can guarantee

coverage at such scales.

A. Basic authentication scheme

The "basic" authentication scheme is based on

the model that the client must authenticate itself with

a user-ID and a password for each realm. The realm

value should be considered an opaque string which

can only be compared for equality with other realms

on that server. The server will service the request

only if it can validate the user-ID and password for

the protection space of the Request-URI. There are

no optional authentication parameters.

B. Disadvantages of this scheme

Web Browser or other client Program provides

credentials in the form of username and Password.

Although the scheme is easily implemented, it relies

on the assumption that the connection between the

client and server computers is secure and can be

trusted. The credentials are passed as plaintext and

could be intercepted easily. The scheme also

provides no protection for the information passed

back from the server.

C. Digest authentication scheme and its

disadvantages

MPI Digest access authentication is one of the

agreed methods a web page can use to negotiate

credentials with a web user (using the MPI

Libraries). Digest authentication is intended to

obsolete unencrypted use of the Basic access

authentication, allowing user identity to be

established securely without having to send a

password in plaintext over the network. Digest

authentication is basically an application of

cryptographic hashing with usage of nonce values to

prevent cryptanalysis.

 Digest access authentication is intended as a

security trade-off; it is intended to replace

unencrypted MPI Basic access authentication which

is extremely weak. However it is not intended to

replace strong authentication protocols, such as

Public key or Kerberos (protocol) authentication.

Security wise, there are few drawbacks with Digest

access authentication.

 Much of the security options are optional. If

quality-of-protection (qop) is not specified by server,

the client will operate in a security reduced legacy

mode. Digest access authentication is vulnerable to

Man-in-the-middle attack; a Man-in-the-middle

attack (MitM) attacker could tell clients to use Basic

access authentication or legacy Digest access

authentication mode. Internet Explorer does not

comply with the digest access authentication

standard.

D. Time stamp and its disadvantages

 A timestamp is a sequence of characters,

denoting the date and/or time at which a certain

event occurred. This data is usually presented in a

consistent format, allowing for easy comparison of

two different records and tracking progress over

time; the practice of recording timestamps in a

consistent manner along with the actual data is

called time stamping.

 MPI Message Libraries (MML) is a maintenance

Libraries that allows Flow and host Mobile to swap

basic control information when data is sent from one

Mobile to another. It is generally considered a part

of the IP layer. It allows the Mobile on a network to

share error and status information. An MML

message, which is encapsulated within an IP

datagram, is very useful to troubleshoot the network

connectivity and can be Flow checker throughout the

MML.

 In Timestamp Ping Operation the source

workstation sends an MML Get Timestamp message

and waits for an ICMP Send Timestamp response.

 Although the MML timestamp ping uses little

network traffic, the timestamp message is not

usually found in normal network conversations. The

function itself is esoteric, and although it can

provide a time synchronization function for a

workstation, most environments rely on Network

Time Protocol (NTP) to provide clock

synchronization. The MML timestamp ping relies on

ICMP, which is often prevented from traversing

firewalls or packet filters. This ping is probably not

the best choice for scanning through firewalls.

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Humming Bird (01st March 2014)

 Cape Institute of Technology 73 | P a g e

V. PROPOSED SYSTEM DESIGN
However, all the above trace-based tools

only replay the observed schedule. They do not have

the ability to analyse the observed schedule and

derive from them alternate schedules that can arise if

nondeterministic matches are enforced differently.

This crucial ability of DAMPI helps explore traces

that may never natively appear on the given platform,

but can suddenly show up (and potentially result in

bugs) when the code is ported to another platform. In

short, the aforementioned tools do not meet our

stated objectives of guaranteed non-determinism

coverage and scalability.

Development of this application is highly

economically feasible. We need not spend much

money for the accomplishment of the project since

the resources needed for the development of the

system is already available. The only thing to be

done is making an environment for the development

with an effective supervision. If we are doing so, we

can attain the maximum usability of the

corresponding resources.

A. System Architecture

This system consists of sender, receiver, and a flow

checker which enables to send and receive messages

in a reliable manner. The RSA and RC4 algorithm

are used for encryption and decryption purpose so

that the message sent cannot be hacked.

 Fig. 1 Proposed Architecture of Flow checker

B. Sender

Getting Authorization is the first stage in

sending phase. If a user wants to send a text to

Destination user, he wants unique Identification. By

using that Identification System knows that the

person is an authorized person. This system includes

(1) Registration (2) Login and (3) Receive data.

 Registration is the Initial state for getting

Authentication. By Providing username and

Password user sets their Authentication. And System

provides one more credentials that is Secrete key

which is generated by the system for each user. By

using username, Password and Secret key system

will identify the Authorized person.

 In the login if a user wants to send a file means,

he/she must log in by using his/her authentication

credentials. In this module we have to give username,

password and Secret key which was generated by the

system.If the user does not provide proper

information or the given information is mismatched

with database then our system shows Exception

message immediately and if the user’s details are

verified and matched with the existing database then

our system allows the person to transmit the file.

 After login the MPI program calls i.e. our MPI

program starts listening to the client or sender.

Through Login we send the sender’s secrete key for

Identification.

C. Methodology used to send the data

Fig. 2 Sender

The main aim of this module is to encrypt a file

and send that encrypted file to receiver. Encryption

will happen only if the system gets a key from MPI

with in Flow checker. So after verification of user

identification system will send the current user’s

name and his/her secrete key to MPI. In Registration

phase after providing username and password, user

must generate one unique key for identification. That

is Secrete key. This key will take part in our final

key (Flow checker). At this instance our system will

store every details such as username, password,

secrete key, Registration Date and Registration Time.

After Registration for New User system redirects the

user to Login Stage. At this stage the user must

provide the relevant details which was noted or

given through registration. The secret key generation

is in separate class which will return.

D. Flow checker

The Designed Flow checker consist of MPI

verification system which Verifies the secret key

received from the user and authenticate the

corresponding user for secure transmission, the

session key generation where the shared secret key is

used for encryption and decryption. The size of

session key is 8 bits. This session key is generated

from pseudo random prime number and exponential

value of random number and the Qubit Generation to

generate the secret key and random string, then

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Humming Bird (01st March 2014)

 Cape Institute of Technology 74 | P a g e

convert into hex-code and then convert it into binary,

find the least bit of two binary values and get the

quantum bit of 0 and 1.

Fig. 3 Flow Checker Process

E. Flow checker key generation and key distribution

 The To generate the quantum key using the qubit

and session key which depends on qubit

combinations, such as

1. If the value is 0 and 0, then 1/0.707(p[0]+p[1])

2. If the value is 1 and 0, then 1/0.707(p[0]-p[1])

3. If the value is 0 and 1, then p[0]

4. If the value is 1 and 1, then p[1].
 The key distribution distributes the original

session key and qubit to the sender for encryption.

Also, it distributes the qubit and the session key on

the receiver side for decryption.

F. Reciever

Getting Authorization is the first stage in receive

phase. If a user wants to receive a text from source

user, he wants unique Identification. By using that

Identification System knows that the person is an

authorized person.The receiver consist of

registration , login as in sender.

G. Methodology used to receive the data

 The main aim of this system is to decrypt a file.

Decryption will happen only if the system gets a key

from Flow Checker (FC). So after verification of

user identification system will send the current

user’s name and his/her secret key to Flow Checker

(FC).In this phase after providing username and

password, user must generate one unique key for

identification. That is the secret key. This key will

take part in our final key (Flow Checker). At this

instance our system will store every detail such as

username, password, secret key, and registration

date and registration time.

Fig. 4 Receiver Process

VI. RESULTS AND DISCUSSIONS

A. Registration

The registration Page consist of two sections the

secret ID and the secret pin to send and receive the

message. The secret pin does not allow the

unauthorized person to send or to view the data,

hence the message can be kept confidential.

Fig. 5 Registration Page flow checker System

B. sender

The sender after login can send the data to the

receiver. The file name is the name of the file to be

transferred and the size of the file need to be

specified with its extension too.

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Humming Bird (01st March 2014)

 Cape Institute of Technology 75 | P a g e

Fig. 6 Send data

C. Flow checker

The flow checker identifies the hacker through the

algorithms proposed in this paper and alerts the

receiver about the hackers. Receiver can be aware of

all the hackers and receive the data accordingly.

Fig. 7 Identification of hackers

Fig. 8 Alert sent to the receiver

D. Receiver

 Once the receiver is aware of the hackers the

receiver decrypts using RSA algorithm and obtain

the data in a secured manner. The session time is

noted and the view report can be used to view the

data sent and received.

Fig.9 Receiver

VII. CONCLUSION
 This study proposed we have presented

Flow Checker, a low overhead method for detecting

communication-related bugs in MPI libraries. Based

on collected runtime traces, it extracts MP-intentions

and checks whether the underlying message flows in

MPI libraries fulfil the MP-intentions. If an MP-

intention is not fulfilled, Flow Checker reports the

bug and provides relevant diagnostic. We have built

a prototype of Flow Checker. Our evaluation with

five real-world and two injected bug cases in three

popular MPI libraries, including Open MPI,

MPICH2, and MVAPICH2, shows that Flow

Checker detects all the evaluated bug cases

effectively. Additionally, Flow Checker provides

useful diagnostic information for narrowing down

root causes of the bugs. In fact, Flow Checker

pinpoints root causes for six out of seven evaluated

bug cases. Furthermore, Flow Checker incurs low

runtime overhead.

VIII. FUTURE ENHANCEMENT

 The whole can be enhanced for parallel and

distributed system between two systems in a local

area network through the Flow checker which can be

a third system in the local area network. The

communication round between the sender and the

receiver becomes one by applying this project as

well as secret key authentication is being provided

by the MPI which in turn generates the Flow

checker.

ACKNOWLEDGMENT

The authors wish to thank the anonymous

reviewers for their valuable suggestions and

comments which encouraged us towards new scope

in our research.

REFERENCES

[1.] “Message Passing Interface Forum,”

http://www.mpi-forum.org, 2012.

http://www.mpi-forum.org/

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

International Conference on Humming Bird (01st March 2014)

 Cape Institute of Technology 76 | P a g e

[2.] “Papers About MPI,”

http://www.mcs.anl.gov/research/

projects/mpi/papers, 2012.

[3.] “Architecture Share in top 500

Supercomputers for 06/2009,”

http://www.top500.org/stats/list/33/archtype,

2012.

[4.] “MPICH2: A High-Performance and Widely

Portable Implementation of the Message

Passing Interface (MPI) standard,” http://

www.mcs.anl.gov/research/projects/mpich2,

2012.

[5.] “MVAPICH2: MPI-2 over OpenFabrics-IB,

OpenFabrics-iWARP, PSM, uDAPL and

TCP/IP,” http://mvapich.cse.ohio-state.edu/

overview/mvapich2, 2012.

[6.]] E. Gabriel, G.E. Fagg, G. Bosilca, T.

Angskun, J.J. Dongarra, J.M. Squyres, V.

Sahay, P. Kambadur, B. Barrett, A.

Lumsdaine, R.H. Castain, D.J. Daniel, R.L.

Graham, and T.S. Woodall, “Open MPI:

Goals, Concept, and Design of a Next

Generation MPI Implementation,” Euro

PVM/MPI, 2004.

[7.]] J.M. Squyres and A. Lumsdaine, “A

Component Architecture for LAM/MPI,”

Proc. Euro PVM/MPI, 2003.

[8.] MPI Bug Tickets,” https://svn.open-

mpi.org/trac/ompi/ ticket/689, 2012.

[9.] D.C. Arnold, D.H. Ahn, B.R. de Supinski, G.

Lee, B.P. Miller, and M. Schulz, “Stack

Trace Analysis for Large Scale Debugging,”

Proc. IEEE Int’l Parallel and Distributed

Processing Symp. (IPDPS), 2007.

[10.] J. DeSouza, B. Kuhn, B.R. de Supinski, V.

Samofalov, S. Zheltov, and S. Bratanov,

“Automated, Scalable Debugging of MPI

Programs with Intel Message Checker,” Proc.

Second Int’l Workshop Software Eng. for

High Performance Computing System

Applications (SE-HPCS), 2005.

[11.] G. Carrozza, D. Cotroneo, and S. Russo,

“Software Faults agnos is in Complex OTS

Based Safety Critical Systems,” Proc.

Seventh European Dependable Computing

Conf. (EDCC), 2008.

[12.] A. Vo, S. Vakkalanka, M. DeLisi, G.

Gopalakrishnan, R.M. Kirby, and R. Thakur,

“Formal Verification of Practical MPI

Programs,”Proc. 14th ACM SIGPLAN

Symp. Principles and Practice of Parallel

Programming (PPoPP), 2009.

[13.] Z. Chen, Q. Gao, W. Zhang, and F. Qin,

“FlowChecker: Detecting Bugs in MPI

Libraries via Message Flow Checking,” Proc.

ACM/ IEEE Int’l Conf. High Performance

Computing, Networking, Storage and

Analysis, 2010.

http://www.mcs.anl.gov/research/
http://mvapich.cse.ohio-state.edu/
https://svn.open-mpi.org/trac/ompi/
https://svn.open-mpi.org/trac/ompi/

